					+															
					+															
					+															
					+	-														
					+	-														
					+	-														
					+															
					+	-														
					+															
					+															
					+															
					+															
					+															
					+															
		+																		
			-		+															
					+															
					+															
					+	-														
					-															
					+															
1																				

Session 12 10/13/25

1. what are the advantages and disnavantages of the Michaelis Menten equation/graph? navantages:
disadvantages:
2. bigger km = affinity
3. What are the advantages and disadvantages of Lineweaver Burke? advantages:
disadvantages:
4. Wnat is the purpose of both LWB and MM?
5. What kind of curve is seen when using the MM equation? praw this graph & label appropriately.

6. Define competetive inhibition and araw the reaction. Give both the written chemical equation and associated graph.
7. Define noncompetetive inhibition and arow the reaction, give both the written chemical equation and associated graph.
8. Define uncompetetive innibition and draw the reaction. give both the written chemical equation and associated graph.
の. Braw the 3 graphs of competetive, uncompetetive, and noncompetitive for both LWB 2 MM

- 10. Assume you have a LWB plot and determine the x-intercept is approximately 4. what is the corresponding km value?
- 11. Assume you have a LWB plot and determine the x-intercept is approximately 6 what is me corresponding km value?

1a. consider the following data for an enzyme-catalyzed hydrolysis reaction in the presence and absence of inhibitor I

Vo [umol/min]	(nim/ lomu) 10V
እ0.የ	4.2
ሕ ጣ	5.8
45	9
67.6	13.6
87	16.2
	20.8 29 45 61.6

using the MM plot, aetermine Km for the uninhibited and inhibited reaction

Using the data above,

- a. generate lineweaver-Burk plots
- b. explain the significance of the notizontal intercept. The vertical intercept, and the slope